
NASA/TMp2001-210884

Enhancing the Remote Variable

Operations in NPSS/CCDK

Janche Sang

Cleveland State University, Cleveland, Ohio

Gregory Follen, Chan Kim, Isaac Lopez, and Scott Townsend
Glenn Research Center, Cleveland, Ohio

Prepared for the
2001 International Conference on Parallel and Distributed Systems

cosponsored by the Korea Information Science Society and the

Institute of Electrical and Electronics Engineers

KyongJu City, Korea, June 26-29, 2001

National Aeronautics and

Space Administration

Glenn Research Center

May 2001

Acknowledgments

The authors would like to express their appreciation to management of the High Performance Computing
and Communications Program for supporting NPSS.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov/GLTRS

Enhancing the Remote Variable Operations in NPSS/CCDK

Janche Sang

Department of Computer and Information Science

Cleveland State University

Cleveland, Ohio 44115

Gregory Follen, Chan Kim, Isaac Lopez, Scott Townsend

National Aeronautics and Space Administration

Glenn Research Center

Cleveland, Ohio 44135

Abstract

Many scientific applications in aerodynamics and solid mechanics are written in Fortran. Refitting
these legacy Fortran codes with distributed objects can increase the code reusability. The remote variable
scheme provided in NPSS/CCDK helps programmers easily migrate the Fortran codes towards a client-
server platform. This scheme gives the client the capability of accessing the variables at the server site. In
this paper, we review and enhance the remote variable scheme by using the operator overloading features
in C++. The enhancement enables NPSS programmers to use remote variables in much the same way
as traditional variables. The remote variable scheme adopts the lazy update approach and the prefetch

method. The design strategies and implementation techniques are described in details. Preliminary
performance evaluation shows that communication overhead can be greatly reduced.

1 Introduction

A distributed object is a reusable, self-contained piece of software that cooperates with other objects on the

same machine or across a network in a plug-and-play fashion via a well-defined interface. The Numerical

Propulsion System Simulation (NPSS) [7] attempts to provide a collaborative design and simulation en-

vironment based on this concept. It uses object-oriented technologies such as C++ objects to encapsulate

individual engine components and Common Object Request Broker Architecture(CORBA) [8] for object

communication and deployment across heterogeneous computing platform. Many scientific applications in

aerodynamics and solid mechanics are written in Fortran. Refitting these legacy Fortran codes with dis-

tributed objects can increase the code reusability. The NPSS provides a CORBA Component Development

Kit (CCDK) which is a C++ wrapper library. It is easier for programmers to code using the CCDK than to

implement all the functionality using CORBA IDL.

Because CORBA IDL to Fortran mapping has not been proposed, there seems to be no direct method of

generating CORBA objects from Fortran without using CORBA/C++ wrappers. The wrapper is responsible

for accepting the request from the clients and then launching the encapsulated legacy codes. Based on

the level of encapsulation, we can classify the wrapping approaches into two broad categories: shell script

NASA/TM--2001-210884 1

Client
1. read data

Input/Output

Middleware

7. get

Legacy Application

I Input/Output functions I

I Control Logic functions I

I Computation functions I

I Common Variables I

l 4. r 5eadllwriteServer execute

Wrapper _
Middleware

Figure 1 Script Wrapping

Client

Input/Output

IControlLogic [

Middleware

Sewer

Wrapper

I Legacy codes

I[Computation functions

I[[Common Variables [

Middleware

Figure 2: Re-Structure Wrapping

I

II

wrapping and re-structure wrapping. The shell script wrapping approach involves writing wrappers that

provide the input data for the code, execute the code as a shell command (e.g. using the UNIXsystera ()

function), and retrieve the output result (see Figure 1). That is, the wrapper performs all of its interactions

with the legacy code via input and output files. The major advantage of this approach is that programmers

do not need to modify the Fortran code.

The re-structure wrapping approach involves re-engineering the Fortran code and compiling/linking the

code with CORBA/C++ wrapper. Namely, the code is re-organized and partitioned into client and server

parts (see Figure 2). Generally, a scientific application contains I/O module, control logic module, and

computation module. Using this approach, the control logic module could be moved to the client site to give

the client the flexibility of controlling and invoking individual iteration used in most scientific computation.

Note that the computation functions at the server site can be further decomposed into several objects or

components. A semi-automatic conversion tool which takes the Fortran program as input and helps pro-

grammers generate a C++ header file and an IDL file for wrapping can be found in [13]. Strategies about

program decomposition and object extraction have been discussed in references [l], [9], and [15]. This topic

is beyond the scope of the paper.

9 '9NASA/TM--.001 -. 10884 2

Both of the wrapping approaches should deal with the issues of passing the input data and getting the result

between the client and the server. For the shell script wrapping approach, the wrapper needs to transfer

the input/output data files. A feasible implementation method is to read the file into a multi-string format

variable, pass the variable to the remote site through a function argument, and restore/save the variable to a

file. For the re-structure approach, one method described in [13] extracts the Fortran COMMON blocks and

converts them into a structure-type attributes in CORBA IDL. Through the attributes, the client can initialize

the variables which will be used by the server.

An alternative re-structure method supported by the NPSS/CCDK is based on the remote variable scheme.

The server should register the variable with a name as the key to allow the client to access. The client

can set and get the variable's value through it's registered name. In this research, we are interested in the

enhancement of the remote variable programming interfaces in NPSS/CCDK. Our objective is to define

the remote variable operators to mimic conventional variable usage. With the support of remote variable

operations which have the same notations as traditional variables, the programmers can easily migrate their

Fortran codes towards a client-server platform.

2 The Remote Variable Scheme in NPSS/CCDK

NPSS/CCDK supports a remote variable scheme between the client and the server[16]. This scheme is

based on the distributed shared memory (DSM) technology in which data are logically shared but physically

distributed over networks of workstations. Depending on the level of implementation, we can classify the

approaches to supporting DSM into two major categories: page-based and object-based. The former is

usually implemented at the operating system level through an extended memory manager[5]. Transparency

is the major advantage of this approach because the memory system is totally hidden from users. The object-

based approach is often realized at the language or the library level to support shared objects[6]. It is more

flexible and requires less development efforts than the system dependent page-based approach.

The NPSS/CCDK remote variable scheme is a simplified version of the object-based DSM mechanism. As

we mentioned earlier, the purpose of this scheme is to provide a simple and elegant data-sharing capability

in the client-server platform. The client can read data into the shared variables which will be used by the

server to perform some computations. Then, the client can get the variables' values back to either output the

result or to issue another request of iteration. That is, the variables are shared only between the client and

the server processes in a sequential manner. Therefore, there is no immediate need to support complicated

synchronization primitives and memory consistency policies addressed in the DSM technology.

Figure 3 depicts the framework of the remote variables in NPSS/CCDK. When the server starts, each shared

variable should be registered with a character-string name as the key. For example, a programmer can use

the following Fortran statement to register the real variableX:

call NPSS_registerReal4Ref('X', X, NPSS_INPUT, 'units', 'description', err)

Note that Fortran adopts call-by-reference as the parameter passing scheme. Hence, the location of the

shared variable X is passed to the registration function via the second parameter. This address is stored along

with the key in the shared variable list. To declare a corresponding remote variablez at the client site, the

following statement is used:

RemoteReal X = RemoteReal (cspan, "X") ;

As shown in Figure 3, each remote variable should be bound to a particular server which hosts the variable.

NASA/TM--2001-210884 3

Client Server

y Remote VariableDeclaration

- -- 7 Remote Server

k _server -----]

refStr _data
local -

corn.... x" Lx _ j,--_

.z.lz

user

codes

NPSS

CCDK

lr

set

get

CORBA

V aria2liRe2isa'_ ati°2. _k _ _

"ForeignElement serve/

varList /

,..._ k,_x, var! _var

i - t

,--_-y,, ! _

-----"z" I
I i

Figure 3: Framework of the NPSS/CCDK Remote Variables

The character-string name should be provided during the declaration in order to find the variable's location
from the variable list at the server.

Two basic functions set() and get() are provided for setting and getting the remote variable's value,

respectively. Figure 4 shows in details the implementation of theset () and gee () methods which belong

to the Foreigngiement server class. As described in [16], the ForeignElement class implements the

CorbaExtElement interface and provides an API with which the legacy Fortran code can be connected.

The calling sequence 2 ---+ 3 : 6 --+ 8 in Figure 4 shows an example of such connection between Fortran

and the ForeignElement class. The symbol ---+ represents a function call, while the symbol : denotes

an execution sequence. That is, the registration of the remote Fortran variable X at line 2 calls the C++

function npss_registerreaI4ref__ at line 3. After executing a few statements, this function invokes the

ForeignElement method regiseerReal4Ref at line 6 and continues its execution at line 8.

The registered variable is inserted into the variable list_varList in the ForeiqnElement : : registerReal4Ref

method (at line 10) and is being searched via lookup () in the set () and get () methods (at line 16 and

24). Below we use c_and [3 to denote the server site's set () and get () method invocation sequences with

their line numbers as shown in Figure 4.

tx 21 • 25 ---+ 37 • 39 ---+ 49

13 13"17---432:34------+55

The CORBA-based ForeignElement class is encapsulated by another family of classes which include

RemoteServer, RemoteVariable, RemoteNumber, etc. These classes provide user-friendly interfaces to

the client and their implementation can be found in Figure 5. The calling sequences of theset () and get ()
methods at the client are shown below:

y 37"41 ---+ 55"58---+ ct

6 22"24---+50:53---+[3

NASA/TM--2001-210884 4

Notethatthemethodinvocationsatline58and53will startthesequencesocand13at the server, respec-

tively. To thoroughly understand how the remote variable scheme works between the client and the server,
interested readers can follow these four method invocation sequences to trace NPSS/CCDK source codes.

3 Enhancement of the Remote Variable Operations

3.1 Operator Overloading

With the support of the Foreign-related and Remote-related families of classes in CCDK, programmers

can easily re-engineer their legacy Fortran programs into the client-server platform. The efforts of learning

and programming with CORBA can be totally reduced. However, there are some rooms for improvement

in the remote variable operations. One is the asymmetrical relationship between getting and setting the

remote value. "Get" is done via indirection (unary '*') while "Set" is done by normal assignment. Another

is the lack of index operator (i.e. []) support for the remote array element access. Programmers need to

call specific functions such as setEtement () or getElement () to access remote array elements. Figure 6

shows these two problems.

NPSS programmers have to be aware of these uncommon operations on remotely based data. To alleviate

programmer's burden, we need to modify the Remote- family of classes. In the old implementation, the

reason why an unary '*' is needed is to find the r-value of the variable. It distinguishes that its position

is on the right-hand side of the assignment operator =. We find that this can be replaced with the ADT

type-conversion overloading operator

operator type() { ... }

because if the variable appears in an expression, this type-conversion function will be implicitly invoked[10].

As shown in Figure 7, the overloaded operator T () invokes the method get () and returns the variable's

value.

To encapsulate the functions setElement () and getEtement () of remote-array access, we also overload

the index operator [] (see Figure 8). The old implementation lets one local object represent all of the array

elements. A problem arises when programmers use the following statement

ARO[0] = ARO[I];

the first index 0 will be overwritten by the second index 1 because they share the same space in the local

object. To solve this problem, we add one more level of the remote array class. The intermediate class

_RemoteArraylD represents an individual array element and each has its own index number. The higher

level class contains an array of the intermediate class elements and an overloading index operator[]. Note

that our current implementation allocates array elements vianew inside a for loop. The performance cost is

very high. Future modification is needed to have a one-time allocation instead of requesting element space

one by one.

The cin and cout operators are also overloaded for the remote variables. Therefore, programmers can read

data into remote variables using these operators. Figure 9 shows the new usage. In fact, these overloading

operators for remote variables allow users to write client-server programs just as using traditional languages.

NASA/TM--2001-210884 5

...................................... npss_int.f ...

1 c Register namelist variables.

2 call NPSS registerReal4Ref('X', X, NPSS_INPUT, 'units', 'description', err)

...................................... Fortran. C ..

3 void npss_registerreal4ref (const char* name, NCPReal4& value, int& ioStatus)

4 { ForeignElement* self = ForeignElement::self();

5 ...

6 self->registerReal4Ref(nameStr, value, IOS(ioStatus), unitStr, descStr);

...................................... ForeignElement.C ...

8 void ForeignElement::registerReal4Ref(const char* name, NCPReaI4& value)

9 { CVariableBasePtr newVar = new CFloatRef(name, value);

i0 _varList.insertKeyAndValue{&(newVar->getName(}), newVar);

ii registerAttributesInewVar, ioStatus, units, description};

12 }

13 CORBA::Any* ForeignElement::get(const char* name ADD F3T4 DECL)

14 { CORBA::Any* anyPtr;

15 NCPString attrName;

16 _JariableBasePtr it = lookup(name, attrName);

17 anyPtr = it->get(attrName);

18 ...

19 return anyPtr;

2O]

21 void ForeignElement::set(const char* name, const CORBA::Any& value,CORBA::Boolean restricted ADD ENV DECL)

22 { ...

23 NCPString attrName;

24 CVariableBasePtr it = lookup(name, attrName);

25 it->set(attrName, value, restricted);

26 }

27 CVariableBasePtr ForeignElement::lookup(const char* name, NCPString& attrName)

28 { ...

29 CVariableBasePtr it = _varList.findValue(&findName);

30 return it;

31 }

...................................... CCDK/CBase/CJariableBase. C

32 CORBA::Any *CVariableBase::get(const char*name)[

33 CORBA::Any *it=new CORBA::Any();

34 getToAny(name,*it);

35 ...

36)

37 void CVariableBase::set(const char *name,const CORBA::Any &it,CORBA::Boolean restricted)[

38 ...

39 setFromAny(name,it);

4O }

...................................... ForeignVariable.H ..

41 class CFloatRef : public CVariableBase {

42 protected:

43 NCPReaI4& _var;

44 ...

45 public:

46 CFloatRef(const char* name, NCPReaI4& it) : CVariableBase(name), _var(it) {};

47 ...

48 }

...................................... ForeignVariable. C ...

49 void CFloatRef::setFromAny(const char* name, const CORBA::Any& it)

50 { ...

51 if (it >>= doubleVal) {

52 var = doubleVal;

53 ...

54 }

55 void CFloatRef::getToAny(const char* name, CORBA::Any& it)

56 (...

57 double doubleVal = _var;

58 it <<= doubleVal;

59]

NASA/TM--2001-210884

Figure 4: Server code

6

...................................... Client.C ...

1 RemoteServer* cspan;

2 cspan = new RemoteServer("CSPANdemo");

3 RemoteReal X = RemoteReal(cspan, "X");

4 X = 1.25;

...................................... RemoteVariable. H ..

5 typedef RemoteNumber<CORBA::Double> RemoteReal;

6 template <class T> class RemoteNumber : public RemoteVariable<T> {

7 ...

8]

9 template <class T> class RemoteVariable

i0 protected:

ii // Local copy of the data.

12 T data;

13

14 // The {bound) remote server to use

15 RemoteServer*& _server;

16

17 // Name of variable on remote server.

18 RWCString refStr;

19 ...

2O)

21 template <class T>

22 void RemoteVariable<T>::get(void)

23 {

24 CORBA::Any* anyPtr = _server->get(_refStr};

25 if (!_get(anyPtr)) {

26 ...

27 }

28]

29

30 template <class T>

31 int RemoteNumber<T>::get(CORBA::Any* anyPtr)

32 {

33 return *anyPtr >>= _data;

34]

35

36 template <class T>

37 void RemoteVariable<T>::set(void)

38 { CORBA::Any anyVal;

39

40 anyVal <<= data;

41 _server->set(_refStr, anyVal);

42 }

...................................... RemoteServer. H ...

43 class RemoteServer [

44 ...

45 private:

46 NCPCorba::CorbaExtElement* _server;

47 ...

48 }

49

...................................... RemoteServer.C ..

50 CORBA::Any* RemoteServer::get(const char* varName)

51 (CORBA::Any* anyPtr;

52 ...

53 anyPtr = _server->get(varName);

54 }

55 void RemoteServer::set(const char* varName, CORBA::Any& value,

56 int synchronous)

57 { ...

58 _server->set(varName, value, i);

59)

Figure 5: Client code

NASA/TM--2001-210884 7

Server:

call

call

err)

NPSS_registerReal4Ref('CP',CP,NPSS_INPUT,'units','description',err)

NPSS_registerReal4ArraylDref('ARO',ARO,50,NPSS_INPUT,'units','description,,

Client:

RemoteReal CP : RemoteReal(cspan,"CP");

RemoteRealArraylD ARO = RemoteRealArraylD(cspan, "ARO");

CP = 4.0_

double g;

g = *CP; // problem 1

ARO.setElement(0,3.0); ARO.setElement(l,2.5); // problem 2

ARO.setElement(2, ARO.getElement(0)+ARO.getElement(1));

g= ARO.getElement(1);

Figure 6: Problems of Uncommon Remote Variable Operations

3.2 Lazy Update and Prefetch

Generally, we can separate the NPSS client-server computing into three phases: the pre-execution phase at

client, the server execution phase, and the post-execution phase at client. The remote variables are usually

initialized during the pre-execution phase and their computed values are either displayed or used for deter-

mining another iteration during the post-execution phase. In the pre-execution phase, many variables can

be set. To reduce the number of message transmitted, we adopt the lazy update approach to postpone send-

ing the set requests. These variables' values will be merged, transfered, and set via invoking the function

setMul tiple ()just before launching the server's computation. Similarly, when the server execution phase
ends, the client can prefetch a few variables through the functiongetHultiple() before these variables

are actually used. When these variables are referenced later, their data are available locally. Figure 10 and

11 demonstrates the difference between the immediate streaming requests and the lazy/prefetch approaches
with aggregated data.

In our implementation, the poolsW pool v and R pool u declared in the RemoteServer class are used to

keep track of which variables needs to be lazily set and prefetched, respectively (see Figure 12). To avoid

searching the pools to determine whether a variable is in the pools or not, we use two booleansinWpool and

inRpool for each variable to denote its status. A variable will be inserted into theW pool v when its value

is updated (e.g. cin >> X; , x = 2.0;). A flush() function is provided and will be invoked implicitly
before server starts execution.

Since the NPSS CCDK is provided as a library instead of a compiler, there is no way we can determine which

variables could be prefetched after the server execution phase finishes. One solution is to let programmers

explicitly add a prefetch() function call in their Client. ¢ program. Our solution is based on the time

locality concept used in the cache implementation[14]. If a variable is referenced but the local copy is not

fresh, we will get a copy from the server immediately and put this variable in theR pool u. Therefore, it

can be prefetched in the next iteration. We also use the flagReferenced as the reference bit for a variable.

It is set to be true when the variable is referenced (see Figure 7 theoperator T () function). If a variable is

in the R pool u but not referenced, our current implementation will remove it from theR pool u. In fact,

it's not necessary to do this because one more variable in prefetching won't cost too much. On the contrary,

NASA/TM--2001-210884 8

template <class T> class RemoteVariable: public RV {

protected:

T data;

string _refStr;

bool inRpool, inWpool, Referenced;

bool lazy;,// default true, programmers may disable the lazy update

RemoteServer*& _server;

fillzet(NCPCorba::NamedValue & nv) (

// parameter nv is call by reference

// called by RemoteServer flush() to merge several vat set.

nv.name = _refStr;

nv.val <<= _data;

inWpool = false ;

}

};

template <class T> class RemoteNumber : public RemoteVariable<T> {

public:

RemoteNumber(RemoteServer*& server, const char* refStr)

: RemoteVariable<T>(server, refStr) };

T operator = (T value) {

_data = value;

if (lazy) {

if !inWpool} {

add this object to the Wpool;

set inWpool to true;

}
else

set

}
returen

}

); // send data back to server immediately

data;

operator T() { /I rvalue conversion

if (lazy) {

if (!inRpool && !inWpool) { // local copy is not fresh

get(); // get a copy from the server

add this object to the R_pool; set inRpool to true;

}

Referenced = true;

return _data;

}
else

return get()

}

friend istream& operator>>(istream& in, RemoteNumber & x}

T temp;

in >> temp;

x = temp; // use overloaded =

return in; // enable cascaded calls };

... similar overloading for operators +=, -=, *=, /=, << ...

};

Figure 7: Pseudo Codes of the Remote- family of classes

NA SA/TM--2001-210884 9

template <class T, class E> class _RemoteArraylD : public RemoteStruct<T> {

public:

_RemoteArraylD(RemoteServer*& server, const char* refStr, int i)

: RemoteStruct<T>(server, refStr),indx(i} {};

E getElement(};

void setElement(E value);

operator E() { /_ rvalue conversion;

if {lazy) ... similar to operator T()...

else getElement(};

return elm;

]

protected:

int indx;

E _elm; // local copy

};

template <class T, class E> class RemoteArraylD : public RemoteStruct<T>{

public:

RemoteArraylD(RemoteServer*& server, const char* refStr)

: RemoteStruct<T>(server, refStr), aSize(-l),a(0) {}

_RemoteArraylD<T,E> & operator[](int i) { // subscript operator,

if (a := 0) {

aSize = size(); // remote method invocation

a = new RemoteArraylD<T,E>* [aSize] ;

for(int i=0; i < aSize; i++) {

);

a[i] : new _RemoteArraylD<T,E>(server, refStr, i); //expensive

}
}
if(i >= 0 && i < aSize) {

return *a[i];

}
else ...

};

protected:

_RemoteArraylD<T,E> **a;

int aSize;

Figure 8: Pseudo Codes of the RemoteArray class

cin >> CP;

g = CP;

cin>> ARO[0]; ARO[I] = 2.5;

ARO[2] : ARO[0] + ARO[I];

g= imo[l]:

do {

cspan->execute();

cout << CP;

cout <<ARO[2];

} while (Q < R);

Figure 9: Improved Remote Variable Operations

NASA/TM--2001-210884 10

Client Server

cin>>x;-

Server

Computing

Phase

Figure 10: Immediate Set and Get Operations

Client Server

Client

Pre-exec

Phase

(p,q,r) --

cin>>x;-_update

y-e2; -_client's
local

z=e3; -_copy

setMultiple single msg

(x,y,z)

_fetch
client's

e_local

co1_f

Server

Computing

Phase

Figure 11: Lazy Update and Prefetch with setMultiple/getMultiple Operations

NASA/TM--2001-210884 11

class RV { /,I an abstract class; inherited by RemoteVariable

public:

virtual const char* getName(void) =0;

friend class RemoteServer; // enable RemoteServer to access protected below

protected:

virtual void fillzetiNCPCorba::NamedValue &! = 0;

virtual void fillzet(NCPCorba::ANamedValue &) = 0;

virtual void fillget(NCPCorba::ANamedValue &) = 0;

};
class RemoteServer {

public:

void flush(){

for each object in the W pool v

put its info (e.g. _refStr, _data) into the aggregated message Ms via fillzet();

reset its inWpool to false;

server->setMultiple(Ms); // invoke a remote method

clear the W pool v;

... similar for array elements pool Av;

}
void prefetch() {

for each object in the R pool u

if (Referenced == false) { reset its inRpool and remove it from the R pool u);

else put its info (e.g. refStr) into the aggregated message Mg via getName();

Ng = _server->getMultiple(Mg); // get an aggregated message Ng with obj values back

Decomopose Ng and reset Referenced to false for for each object in the R pool u;

... similar for array elements pool Au;

}

void execute() { flush(): _server->compute(); prefetch(); }

private:

NCPCorba::CorbaExtElement* server; // pointer to foreign element server

RWTValOrderedVector< RV *> u; // R pool for variables

RWTValOrderedVector< RV *> Au; // R pool for array elements

RWTValOrderedVector< RV *> v; // W pool for variables

R_rfValOrderedVector< RV *> Av; // W pool for array elements

};

Figure 12: Pseudo Codes of the RemoteServer class

if a variable is referenced in every other post-execution, it's better to keep it in the pre-fetch pool. Like the

lazy update approach, the prefetch method is transparent to programmers.

In our implementation, an abstract class called RV is created for providing a few virtual functions. This

abstract class is inherited by the RemoteVariable class (see Figure 8). As shown in Figure 12, the

RemoteServer class uses the RV class to declare the pools. When the server needs to prepare a merged
message for setMultiple(), it invokes the polymorphic function fillzet() which fills the variable's

information into the message buffer.

NASA/TM--2001-210884 12

0.6

0.5

_" 0.4
"10
E
O
O

0.3
e-

.E_ 0.2
I--

0.1

0
0

- I I I I I I

Immed. Update - SUN
Immed. Update - SGI

Lazy Update - SUN

I

---X---

..._)__ _. m

Lazy Update - SGI_

....S[]

20 40 60 80 100 120 140 160

Number of Variables

Figure 13: The effect of Lazy Update with setMultiple

4 Performance Evaluation

In this section, we evaluate the performance of the remote variable scheme in NPSS/CCDK. In the first

experiment, we evaluate the effectiveness of using the lazy update approach. We measure the elapsed time

to update the remote variables for both of the immediate update approach and the lazy update approach. For

comparison purpose, we conduct the experiment on two different hardware configurations. One is a pair of

Sun Ultra-2 workstations (clock 200MHz, 256MB memory) running Solaris 5.6 over Fast Ethernet[4]. It is

worth mentioning that this kind of high-end workstation is fast enough to saturate a 100Mbps Fast Ethernet,

The CORBA package Orbix[3] is used in this configuration, while a Sun SPARC 5 (120MHz) cannot[12].

The other configuration is a SGI Origin 2400 with 24 processors (clock 196MHz, 16GB memory) over

system inter-connection networks. Because of availability, only the free package MICO[11] is installed on

this multiprocessor machine.

Figure 13 shows the elapsed time by varying the number of variables. It is not surprising that the lazy

update approach performs much better than the non-lazy approach for both configurations. The effect is

more significant over Fast Ethernet than over system bus because the former is slower than the latter. Taking

100 variables as an example, the lazy approach is 4.6 times faster than the non-lazy approach over Fast

Ethernet, while it is only 3.1 times faster through system internal connection.

We get very similar performance figures for the prefetch approach withgetMultiple. Hence, we don't

present them here. Normally, the client may access only a few variables after server execution phase. The

prefetch still can gain large performance improvement when the number of iterations increases. For example,

assume that there are k variables could be prefetched andn iterations are required. The number of messages

will be reduced from k x n to k + n - 1. This is because in the first iteration we need to get thesek variables,

while we only need one single getMultiple request in the rest n - 1 iterations. Let tge,(X) denote the time

to get x variables via one message. Then, the variable access time could be reduced fromk × n × tget (1) to

NASA/TM--2001-210884 13

Benchmark CSPAN] Immed. Update [Lazy Update]Improvement % [I Script Wrapping

SUN- Fast Ether] 0.405 sec. I 0.271 see. 33% NASGI - System Bus 0.257 sec. 0.202 sec. 21% 0.184 sec

Table 1: Performance Improvement for the Client-Server CSPAN using Lazy Update

k x tget(l) + (n- 1) x tget(k).

In another experiment, we use the 1-dimensional axial-flow compressor design code CSPAN which is written

in Fortran as the benchmark[2[. This code uses a rapid approximate design methodology based on isentropic

simple radial equilibrium to determine the flow path either for a given number of stages or for a given overall

pressure ratio. We re-engineer the code and migrate it to the client-server platform. For the purpose of
comparison, we also implement a file transfer method. The methodputfile we add to NPSS/CCDK takes

an input file name as the argument and transfer this file from the client to the server. An example is shown
below.

cspan->putfile ("fan.input ");

Table 1 shows the empirical result. Using the lazy update approach, performance can be improved ranging

from 21% to 33%. It's interesting that the script wrapping approach performs even better than the lazy
update approach.

5 Summary

The remote variable scheme provided in NPSS/CCDK helps programmers easily migrate the Fortran codes

towards a client-server platform. The efforts of learning and programming with CORBA can be totally
reduced. This scheme gives the client the capability of accessing the variables at the server site. In this

paper, we discuss the implementation of the remote variable scheme in CCDK. We identify several areas for

improvement and implement them by overloading the data-type conversion operator and the index operator.

The enhancement enables NPSS programmers to use remote variables in much the same way as traditional

variables. Furthermore, the lazy update and the prefetch approaches used in the scheme greatly reduce the

number of messages transmitted. NASA has many research sites. The message transmission cost between

two distant sites is usually higher than local. We can expect that NASA researchers will benefit more from

using the enhanced NPSS/CCDK when they run the client and server programs across different sites.

NASA/TM--2001-210884 14

References

[1] B. L. Achee and D. L. Carver. Creating Object-Oriented Designs From Legacy Fortran Code. Journal

of Systems and Software, 39:179-194, 1997.

[2] A. Glassman and T. Lavelle. Enhanced capabilities and Modified users Manual for Axial-Flow Com-

pressor Conceptual Design Code CSPAN. Technical Report 106833, NASA GRC, 1995.

[3] IONA Technologies. URL: http://www.iona.com.

[4] H.W. Johnson. Fast Ethernet." Dawn of a New Network. Prentice Hall, Upper Saddle River, NJ 07458,
1996.

[5] K. Li. IVY: A Shared Virtual Memory System for Parallel Computing. InProceedings of the Interna-

tional Conference oll Parallel Processing, pages 94-101, 1988.

[6] W. Liang, C.T. King, and EE Lai. Adsmith: An Object-Based Distributed Shared Memory System for

Networks of Workstations. IE1CE Trans. on Information and Systems, E80-D, No. 9:899-908, 1997.

[7] J. Lytle. The Numerical Propulsion System Simulation: A Multidisciplinary Design System for

Aerospace Vehicles, NASA/TM-1999-209194. In Proceedings of the 14th International Symposium

on Air Breathing Engines sponsored by the International Societ)' for Air Breathing Engines Sep. 1999.

[8] Object Management Group. The Common Object Request Broker: Architecture and Specification, 2.3

ed., June 1999.

[9] C. Ong and T. Tsai. Class and Object Extraction from Imperative Code. Journal of Object-Oriented

Programming, pages 58--68, Mar�April 1993.

[10] I. Pohl. C++for CProgrammers. Addison-Wesley, Reading, Mass., 3rd edition, 1999.

[11] A. Purder and K. Romer. MICO is CORBA. URL: http://www.mico.org.

[12] J. Sang, C. Kim, T. J. Kollar, and I. Lopez. High-Performance Cluster Computing over Gigabit/Fast

Ethernet. lnformatica, 23, 1999.

[13] J. Sang, C. Kim, and I. Lopez. Developing CORBA-based Distributed Scientific Application from

Legacy Fortran Programs. In Proceedings of the HPCC Computational Aerosciences (CAS) Workshop
2000.

[14] A. S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Englewood Cliffs, NJ 07362, 1992.

[15] P. Tonella, G. Antoniol, R. Fiutem, and F. Calzolari. Reverse Engineering 4.7 Million Lines of Code.

Software- Practice and Experienc_ 30:129-150, 2000.

[16] S. Townsend. Using External Codes with NPSS. Technical Report in preparation, NASA GRC, 2001.

NASA/TM---2001-210884 15

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 2001

4. TITLE AND SUBTITLE

Enhancing the Remote Variable Operations in NPSS/CCDK

6. AUTHOR(S)

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

Janche Sang, Gregory Follen, Chan Kim, Isaac Lopez, and Scott Townsend

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

WU-725-10-24-00

8. PERFORMING ORGANIZATION

REPORT NUMBER

E- 12753

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM--2001-210884

11. SUPPLEMENTARY NOTES

Prepared for the 2001 Intemational Conference on Parallel and Distributed Systems cosponsored by the Korea Informa-

tion Science Society and the Institute of Electrical and Electronics Engineers, KyongJu City, Korea, June 26-29, 2001.

Janche Sang, Cleveland State University, Department of Computer and Information Science, 1983 E. 24th Street,

Cleveland, Ohio 44115-2403; Gregory Follen, Chan Kim, Isaac Lopez, and Scott Townsend, NASA Glenn Research

Center. Responsible person, Isaac Lopez, organization code 2900, 216-433-5893.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Categories: 07 and 61 Distribution: Nonstandard

Available electronically at htto://_ltrs.t, rc.nasa._ov/GLTRS

This publication is available from the NASA Center for AeroSpace Information, 301-621-0390.

13. ABSTRACT (Maximum 200 words)

Many scientific applications in aerodynamics and solid mechanics are written in Fortran. Refitting these legacy Fortran

codes with distributed objects can increase the code reusability. The remote variable scheme provided in NPSS/CCDK

helps progranuners easily migrate the Fortran codes towards a client-server platform. This scheme gives the client the

capability of accessing the variables at the server site. In this paper, we review and enhance the remote variable scheme

by using the operator overloading features in C++. The enhancement enables NPSS programmers to use remote variables

in much the same way as traditional variables. The remote variable scheme adopts the lazy update approach and the

prefetch method. The design strategies and implementation techniques are described in details. Preliminary performance

evaluation shows that communication overhead can be greatly reduced.

14. SUBJECT TERMS

Computer techniques; Parsing algorithms

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

21

16. PRICE CODE

19. SECURITYCLASSIFICATION 20. LIMITATION OF ABSTRACT
OF ABSTRACT

Unclassified

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

